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1 Description 

This document presents a generic EMTP model for a three-phase aggregated grid-forming inverter 
(GFM inverter). It can be used for stability, fault, harmonic, dynamic, and interconnection studies. 
The converter is a three-phase voltage source converter (VSC). Its control system is based on the 
dq vector voltage-current-control approach. Thus, it can naturally limit the current flowing into the 
converter during disturbances. The basic principle of vector control is to regulate the instantaneous 
voltage angle and amplitude independently through a cascade control loop [1]. 

The GFM inverter can be modeled either as: 
o droop-based  
o virtual synchronous machine (VSM)-based  
o dispatchable virtual oscillator (dVOC)-based 
o or a PLL-based GFM inverter.  

A generic primary-control model of GFM inverter presented in [2], [3], [4] is used for modeling.  

The converter model can be either Detailed Model (DM), in which case the IGBT are represented, 
or Average-Value Model (AVM), in which case ideal voltage sources follow the voltage reference 
calculated by the inner-control loops. The DC link of the converter can be connected to either a 
battery energy storage device or a constant DC voltage source.  

A step-up transformer may be included between the converter and Point of Interconnection (POI). 

The necessary protection functions are added to converter. The model is valid for load-flow, time-
domain and frequency scan simulation types.  

2 Inverter Pins and Device Mask 

The section describes the converter pins and device mask. 

2.1 Inverter pins 

This device has 4 pins. 

Table 1 Converter model Pins 

Pin name Port type Description Units 

P (+) Single-phase, power  Positive pole of the DC link 
 

N Single-phase, power Negative pole of the DC link 
 

refs Control input bundle Pref: Active power, 
Qref: reactive power 
Vacref: AC voltage 

pu 

PCC 3-phase, power  Point of Common Coupling 
 

2.2 Parameters 

2.2.1 General tab 

2.2.1.1 Grid-Forming Inverter Parameters 

 
o Number of aggregated inverters: number of parallel-connected inverters. 
o Frequency: grid frequency . 
o Inverter AC voltage: voltage on the AC side of the inverter. 
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2.2.1.2 Single inverter parameters 

o Inverter rated power:  rated apparent power of a single inverter. 
o DC voltage:   DC-link voltage. 
o DC capacitor:   DC-link capacitor. 
o Choke resistance:  choke resistance. 
o Choke inductance:  choke inductance. 
o Filter reactive power:  reactive power generated by each inverter harmonic filter. See 

3.4.1 for more information on the filter. 

2.2.1.3 Initial operating conditions 

o Number of inverters in service: number of parallel-connected inverters in service. 
GFM control method:  Droop-based, VSM-based, dVOC-based GFM or PLL-based 
GFM. 

o Initial active power:  initial inverter active power reference. 
o Initial reactive power:  initial inverter reactive power reference. 
o Initial AC voltage:  initial inverter AC voltage reference. 
o Adjust initial reactive power input with load-flow results: if this option is checked, 

initial reactive power will be automatically adjusted based on load-flow results. 
o Use this device as a Slack bus in load-flow solution: The device participates to the 

load-flow solution as either a Slack or PV bus. If this option is checked, the device 
participates to the load-flow solution as a Slack bus. 

o Initialization (participate in the load-flow solution): Type of initialization. 
If this option is selected, a load-flow bus and an ideal voltage source are added at the 
point-of-connection of the converter. At the beginning of the simulation, the ideal voltage 
source remains connected to hold the load-flow conditions until the converter is 
initialized. The initialization time is 0.05s. After this time, the ideal voltage source is 
disconnected. 

o Use control reference variations (∆𝐫𝐞𝐟𝐬) for inputs: If this option is checked, the 
signals of the refs input bundle are control reference variations in pu. At any time, the 
outer loop control references are the initial references defined above plus these 
variations.  
If this option is not selected, the signals of the refs bundle are the references used by the 
outer loops. In this case, it is the user responsibility to make sure the initial references in 
the bundle match the one in the mask, the latter being used for load-flow and 
initialization, to avoid initialization problems. 

2.2.2 Inverter Transformer tab 

The ‘Nominal three-phase nameplate input’ transformer model from the standard EMTP library is 
used. 

In the converter transformer tab, the data must insert for the one converter transformer. The 
converter model is aggregated. Therefore, the converter transformer is aggregated according to 
number of aggregated converters, which is automatically done by a script. The total nominal power 
of one aggregated converter transformer is equal to one converter transformer nominal power 
multiplied by the number of aggregated converters.  

o Include step-up transformer: If this option is checked, the converter transformer 
included and connected between the converter and the grid. 

o Connection Type:  See options. 
o Nominal power:  nominal power of a single transformer. 
o Nominal frequency:  nominal frequency of the transformer. 
o Grid side voltage:  nominal voltage transformer on the grid side. 
o Inverter side voltage:  nominal voltage transformer on the inverter side. 
o Winding R:   winding resistance. 
o Winding X:   winding reactance. 
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o Winding impedance on winding 1:  distribution ratio. 
o Magnetization data:    current -flux data. 
o Magnetization resistance:   magnetization resistance. 
o Exclude magnetization branch model: If this option is checked, the magnetization 

branch model is excluded. 

2.2.3 Inverter Control tab 
o Inverter model: AVM, average value model or DM, detailed model. 
o PWM frequency: PWM frequency. 

2.2.3.1 Measuring and monitoring unit 

o Sampling rate: sampling rate frequency. 
o Filter cutoff frequency: cutoff frequency of measuring input filters in Hz, first-order low-

pass filter. 

o PLL proportional pllKp : PLL PI controller, proportional gain. 

o PLL integral pllKi : PLL PI controller, integral gain. 

2.2.3.2 Primary control (droop, VSM ,dVOC, PLL-based controls) (see 
3.5.1.2) 

o Filter cutoff frequency cω :   active and reactive power filter cutoff frequency. 

o Frequency droop coefficient fd :  frequency droop coefficient. 

o Voltage droop coefficient vd :   voltage droop coefficient. 

o VSM inertia constant fm :   inertia time constant. 

o VSM damping factor dd :   damping coefficient. 

o dVOC synchronization gain 1k :  synchronization gain. 

o dVOC voltage amplitude gain 2k :  voltage-amplitude control gain. 

o State freeze threshold dipV :   state freeze threshold. 

o Minimum frequency deviation mind :  minimum frequency deviation. 

o Maximum frequency deviation maxd : maximum frequency deviation. 

o Maximum output active power maxP :  maximum output active power. 

o Minimum output active power minP :  minimum output active power. 

o Maximum output reactive power maxQ : maximum output reactive power. 

o Minimum output reactive power minQ : minimum output reactive power. 

o Overload mitigation controller limKp :  overload mitigation controller, proportional gain. 

o Overload mitigation controller limKi :  overload mitigation controller, integral gain. 

o Freezing PQ limiter reset delay frzT :  freezing PQ limiter after voltage recovery. 

2.2.3.3 Inner control (voltage, active and current controls) 

o Current priority: active power priority (P priority) or reactive power priority (Q priority). 
o Current limit: Converter current limit. 
o Current control setting method: Rise time or PI regulation gains. If the rise time 

method is selected, PI regulator gains are automatically calculated based on the rise 
time. 

o Rise time: Closed-loop current control rise-time. 

o External equivalent resistance sysR  :   external equivalent resistance. 

o External equivalent reactance sysX  :   external equivalent reactance. 
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o Voltage control proportional gain vKp  :  voltage PI controller, proportional gain. 

o Voltage control integral gain vKi :   voltage PI controller, integral gain. 

o Active power control proportional gain pKp : active power PI controller, proportional 

gain. 

o Active power control integral gain pKi : active power PI controller, integral gain. 

2.2.4 Protections tab 

2.2.4.1 Voltage sag protection 

o Enable:   If this option is checked, the voltage sag protection is enabled. 
o Pickup DVS voltage:  Threshold voltage value to activate the Deep-Voltage-Sag (DVS) 

protection. 
o Reset DVS voltage:  Threshold voltage value to deactivate the Deep-Voltage-Sag 

protection. 

2.2.4.2 Chopper protection 

o Enable:  If this option is checked, the chopper protection is enabled. 

o Pickup DCV :  Chopper is ON when dc-voltage is above this value. 

o Reset DCV :  Chopper OFF when dc-voltage is below this value. 

2.2.4.3 Overcurrent protection 

o Inverter pickup current: Converter overcurrent protection threshold. 
o Reset delay: Overcurrent protection release delay. 

2.2.4.4 AC undervoltage protections 

o Enable: If this option is checked, the AC undervoltage protection is enabled. 
o AC undervoltage protection data: Voltage versus time curve for the AC undervoltage 

protection. 

2.2.4.5 AC overvoltage protections 

o Enable: If this option is checked, the AC overvoltage protection is enabled. 
o AC overvoltage protection data: Voltage versus time curve for the AC overvoltage 

protection. 

2.2.5 Harmonics tab 
o Use harmonic model for steady-state and time-domain simulations: If this option is 

checked, this device is modeled as a harmonic current source for steady-state and time-
domain simulations. 

o Use harmonic model for frequency-scan simulations: If this option is checked, the 
Fundamental frequency current magnitude input and the first line of the Harmonic data 
table are adjusted to match the load-flow solution current. 

o Adjust fundamental frequency current to match load-flow solution results: If this 
option is checked, this device is modeled as a harmonic current source during Frequency 
scan simulations. 

o Fundamental frequency current magnitude (for one inverter): Magnitude of the 
fundamental frequency current for 1 inverter in A RMS. This value is automatically 
multiplied by the number of inverters in service. 

o Harmonics data table: Harmonic contents for phase-a (balanced source). 
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3 Inverter device model 

3.1 General 

The general structure of the inverter model is shown in Figure 1. 

 

Figure 1 General structure of three-phase GFM inverter model 

The inverter subcircuit is automatically modified according to the simulation type, so the model is 
valid for any simulation options EMTP® offers. 

During load-flow, the inverter is modelled by a PV bus or Slack bus. The load-flow power is the 
Initial active power input, and the voltage amplitude is the Initial voltage input.  

In time-domain, the model is initialized with the load-flow conditions and the outer loop control 
(primary control) initial references are the ones used during load-flow, which were detailed in the 
section above. The initialization time is t_init =0.05s. During this time, an ideal voltage source is 
connected to the inverter 3-phase pin. This voltage source holds the load-flow conditions while the 
inverter controls are initializing. After this time, the ideal voltage source is disconnected by a switch. 

The active power, reactive power and voltage references may be dynamically varied by changing 
reference inputs (Pref, Qref, and Vacref) inside the refs bundle of the device. 
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These inputs may either be: 
o deviations from the initial references, in which case, they may be set to 0 to 

maintain load-flow condition in time-domain. The Use power reference changes 
for input option may be checked to enable this option.  

o references, in which case, the actual reference value of the outer control loops 
may be set as inputs. 

If an input is set to zero or is not connected, it is assumed to be 0. The inputs are in per unit. 

During frequency-scan analysis, the converter is a Norton harmonic source. It is connected to the 
low-voltage side of the converter transformer if the latter is included. No control is included when 
the harmonic representation is selected. 

3.2 Converter Modeling 

Figure 2 shows the GFM inverter model. 

 

Figure 2 GFM Inverter model  

As shown in Figure 3, the GFM inverter model is composed of  
o “Inverter hardware” block  
o “Inverter Control System” block 
o Inverter transformer (or converter transformer) 
o PV/Slack initialization block  
o Harmonics block which is a Norton harmonic source for harmonic analysis. 

The PV/Slack initialization source contains a load-flow device and an ideal voltage source. It 
provides a flat start condition during initialization of inverter electrical and control systems. 

c+

AVM
45MVA
34.5kV
VSM based GFM

GFM_inverter2



EMTP-EMTPWorks, 4/25/2023 12:03:00 PM  Page 8 of 21 

 
 

Figure 3 EMTP diagram of the GFM Inverter model 

3.3 Hardware 

Figure 4 shows the inverter hardware in EMTP. The inverter hardware is composed of a DC-AC 
converter, a series RL branch (choke filter), two shunt AC harmonic filters, and the current and 
voltage measurement units used for monitoring and control purposes. All variables are monitored 
as instantaneous values and meter locations are shown in Figure 4. The DC-AC converter model 
can be detailed model or average value model. The DC resistive chopper limits the DC bus voltage 
and is controlled by the protection system block. This option is used when the DC bus is connected 
to PV or battery systems. 
 
 

 

Figure 4 Inverter hardware 
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3.4 DC-AC converter model: detailed model (DM) and average 
value model (AVM)  

The EMTP diagram of the detailed model (DM) is shown in Figure 5. It includes a two-level voltage 
source converter (VSC) block and a pulse width modulation (PWM) block.  

 A detailed two-level topology (Figure 6.a) is used for the VSC in which the valve is composed by 
one IGBT switch, two non-ideal (series and anti-parallel) diodes and a snubber circuit as shown in 
Figure 6.b. The non-ideal diodes are modeled as non-linear resistances.  

The PWM block receives the three-phase reference voltages from converter control and generates 
the pulse pattern for the six IGBT switches by comparing the voltage reference with a triangular 
carrier wave. In a two-level converter, if the reference voltage is higher than the carrier wave then 
the phase terminal is connected to the positive DC terminal, and if it is lower, the phase terminal is 
connected to the negative DC terminal. The EMTP diagram of the PWM block is presented in Figure 
7. 

 

Figure 5 DC-AC converter block inside the inverter hardware model (detailed model 
version) 

 

 

Figure 6 (a) Two-level Converter, (b) IGBT valve 
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Figure 7 PWM control block 

The DM mimics the converter behavior accurately. However, simulation of such switching circuits 
with variable topology requires many time-consuming mathematical operations and the high 
frequency PWM signals force small simulation time step usage. These computational inefficiencies 
can be eliminated by using average value model (AVM) which replicates the average response of 
switching devices, converters and controls through simplified functions and controlled sources [5] 
AVMs have been successfully developed for inverter-based technologies [6]. AVM obtained by 
replacing DM of converters with voltage-controlled sources on the AC side and current-controlled 
sources on the DC side as shown in Figure 8. 

The fourth (converter control) tab of the inverter device mask (see 2.2) enables used AVM-DM 
selection. 

 
 

Figure 8 AVM Representation of the VSC 
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𝐶𝑓1 =
𝑄𝑓𝑖𝑙𝑡𝑒𝑟 𝑁𝐼𝑛𝑣

𝑈2(2𝜋𝑓)
 

(1) 

𝐿𝑓1 =
𝑁𝐼𝑛𝑣

𝐶𝑓1(2𝜋𝑓 𝑛1)
2
 

(2) 

𝑅𝑓1 =
(2𝜋𝑓)𝑛1 𝐿𝑓1 𝑄

𝑁𝐼𝑛𝑣

 
(3) 

𝐶𝑓2 = 𝐶𝑓1 (4) 

𝐿𝑓2 =
𝑁𝐼𝑛𝑣

𝐶𝑓2(2𝜋𝑓 𝑛2)
2
 

(5) 

𝑅𝑓2 =
(2𝜋𝑓)𝑛2 𝐿𝑓2 𝑄

𝑁𝐼𝑛𝑣

 
(6) 

where 𝑈 is the rated LV grid voltage, 𝑄𝑓𝑖𝑙𝑡𝑒𝑟 is the reactive power of the filter for one inverter,  𝑄 is 

the quality factor, and 𝑁𝐼𝑛𝑣 is the number of the parallel inverters. 𝑄𝑓𝑖𝑙𝑡𝑒𝑟 is set from the inverter 

mask (see 2.2). The switching frequencies harmonics n1 and n2 are as follows 

𝑛1 =
𝑓𝑃𝑊𝑀

𝑓𝑠
 

(7) 

𝑛2 = 2𝑛1 (8) 

where 𝑓𝑃𝑊𝑀 is the PWM frequency and 𝑓𝑠 is the nominal frequency. 

In case another type of filter (LC or LCL filter) or other parameters may be used, the filter can be 
modified by the user inside the inverter subcircuit. If several inverters are found in the network, the 
filter subcircuit and its parents must be made unique to avoid modifying all inverters instances.  

 

Figure 9 “shunt ac harmonic filter” block 
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are converted to pu and filtered. The sampling frequency can be modified by the user from the 
device mask (see 2.2). The “sampling” blocks are deactivated in AVM due to large simulation time 
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frequencies of the filters can be modified by the user from the inverter device mask (see 2.2). In 
this version, first-order LPFs are used. The protection block includes the AC over/under voltage 
protections, deep voltage sag detector, the DC chopper control, and overcurrent detector.  
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Figure 10 EMTP diagram of the GFM inverter control block 

 

3.5.1 Inverter control 

The EMTP diagram of the “GFM Control” block is shown in Figure 11. It includes reference, inverter 
computing variables, primary control (droop, VSM, and dVOC controls), and inner control (voltage 
and current controls) blocks.   

The “Inverter Computing Variables” block does the dq transformation required for the vector control. 
The Park transformation matrix transforms abc-frame waveforms into dq-frame components 

rotating at synchronous reference angle 𝜃 = ∫𝜔. The synchronous reference speed 𝜔 is sent from 

the primary control. A synchronous reference frame (SRF) PLL is also used in this block to monitor 
and measure the grid frequency [7]. 

The “Primary control” block with dynamics may be based on droop, VSM, or dVOC control methods, 
generates voltage and frequency (angle) references for the inner voltage and current controls (see 
3.5.1.2). If the PLL-based GFM is selected, the “Primary control” block generates the voltage (Vd) 
reference and active power error references to the inner control (see 3.5.1.2). 

The “inner control” block regulates the voltage, active power and current of the inverter using 
proportional integral (PI) controllers. It generates voltage references in the abc-frame for the 
inverter. The design approach for the inner current control is explained in [7]. 

 

Figure 11 EMTP diagram of “GFM inverter control” block 

3.5.1.1 Inner current and voltage loop controls 

The voltage & active power control, the idq reference limiter and the current control diagrams are 
shown in Figure 12.  
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The voltage & active power control is implemented as a PI controller. It generates current 
references in dq-frame by comparing the voltage reference and voltage grid in the dq-frame. Figure 
13 shows the inside of the voltage control block. 

An inner current control loop and current reference limiter are used to control the output current of 
the inverter and limit its value to a desired range of values, which are based on the inverter ratings. 
The dynamic modeling of the current loop is explained in [7]. “Idq reference limiter” is used to limit 
the current references based on priority of the active current or reactive current. 
 

 

Figure 12 EMTP diagram of “inner control” block 

 

Figure 13 EMTP diagram of “Voltage and active power control” block 
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where 𝜔 is the inverter angular frequency,  

𝜔0 is nominal angular frequency,  

𝜔𝑔 is the grid angular frequency measured by PLL,   

V is the inverter voltage magnitude,  

𝑉0 is the nominal voltage magnitude, 

𝑝 is measured active power output of the inverter, 

q is measured active power output of the inverter, 

𝑝𝑟𝑒𝑓 is reference active power output of the inverter, and 

𝑞𝑟𝑒𝑓 is reference reactive power output of the inverter.  

𝜏𝑓, 𝑘𝑑, 𝑘𝑓, 𝜏𝑣, 𝑘𝑣, 𝜏𝑝 and 𝑓𝑣(V) are dependent parameters which are changed according to GFM 

control strategy, as described in Table 2. The parameters of Table 2 are defined at the device mask 
(see 2.2). 

The PLL-based GFM inverter model is presented in [4]. The frequency and voltage droop gains for 
the PLL-based GFM in EMTP are set based on Table 2.  

Figure 14 shows the primary control model in EMTP.  

For all control modes, the inverter can limit active and reactive powers at the inverter level (see 
2.2), in addition to the current limits. 

 

Table 2 Dependent parameters under which the GFM transforms to droop, VSM, dVOC and 
PLL-based controls 

 𝝉𝒇 𝝉𝒗 𝝉𝒑 𝒌𝒅 𝒌𝒇 𝒌𝒗 𝒇𝒗(𝐕) Equations 

PLL-
based NA NA 

1

𝜔𝑐

 NA 
1

𝑑𝑓
 

1

𝑑𝑣
 NA 

𝑃𝑜𝑟𝑒𝑓 = 𝑑𝑓(𝜔𝑔 − ω) + (𝑝𝑟𝑒𝑓 − 𝑝𝑚) 

V = 𝑉0 +
1

𝑑𝑣
(𝑞𝑟𝑒𝑓 − 𝑞𝑚) 

droop 0 0 
1

𝜔𝑐

 0 
1

𝑑𝑓
 

1

𝑑𝑣
 −V + 𝑉0 

ω = 𝜔0 +
1

𝑑𝑓
(𝑝𝑟𝑒𝑓 − 𝑝𝑚) 

𝑉 = 𝑉0 +
1

𝑑𝑣
(𝑞𝑟𝑒𝑓 − 𝑞𝑚) 

VSM 
𝑚𝑓

𝑑𝑓
 0 

1

𝜔𝑐

 
𝑑𝑑
𝑑𝑓

 
1

𝑑𝑓
 

1

𝑑𝑣
 −V + 𝑉0 

𝑚𝑓

𝑑𝑓

𝑑𝜔

𝑑𝑡
= −ω + 𝜔0 +

𝑑𝑑
𝑑𝑓

(𝜔𝑔 − ω)

+
1

𝑑𝑓
(𝑝𝑟𝑒𝑓 − 𝑝𝑚) 

𝑉 = 𝑉0 +
1

𝑑𝑣
(𝑞𝑟𝑒𝑓 − 𝑞𝑚) 

𝜏𝑓
𝑑𝜔

𝑑𝑡
= −ω +𝜔0 + 𝑘𝑑(𝜔𝑔 −ω) + 𝑘𝑓(𝑝𝑟𝑒𝑓 − 𝑝𝑚) (1) 

𝜏𝑣
𝑑𝑉

𝑑𝑡
= 𝑓𝑣(V) + 𝑘𝑣(𝑞𝑟𝑒𝑓 − 𝑞𝑚) (2) 

𝜏𝑝 [

𝑑𝑝𝑚
𝑑𝑡
𝑑𝑞𝑚
𝑑𝑡

] = − [
𝑝𝑚
𝑞𝑚

] + [
𝑝
𝑞] (3) 
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Figure 14 Primary control model 
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mask as shown in 2.2. 
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3.6.1 Over/under voltage protections and deep voltage sag detector 

The over/under voltage protections are designed based on the technical requirements set by Hydro 
Quebec for the integration of renewable generation. The over/under voltage limits as a function of 
time is presented in Figure 15 and can be modified in the inverter device mask. The voltages below 
the red line reference and above the black line reference correspond to the ride-through region 
where the inverter is supposed to remain connected to the grid. 

  

Figure 15 LVRT and HVRT requirements [8] 

This block measures the rms voltages on each phase and sends a trip signal to the inverter circuit 
breaker when any of the phase rms voltage violates the limits in Figure 15 (see the upper part of 
Figure 16).  

The “Deep Voltage Sag Detector” block (lower part of Figure 16) temporary blocks the Inverter in 
order to prevent potential overcurrent and restrict the FRT operation to the faults that occur outside 
the inverter. 

 

Figure 16 Over/under-voltage protections and deep voltage sag protection  
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3.6.2 DC overvoltage protection block 

 The function of DC chopper is to limit the DC bus voltage. It is activated when the dc bus voltage 

exceeds |𝑈𝑐ℎ𝑜𝑝𝑝𝑒𝑟−𝑂𝑁| and deactivated when dc bus reduces below |𝑈𝑐ℎ𝑜𝑝𝑝𝑒𝑟−𝑂𝐹𝐹|. EMTP diagram 

of the “dc overvoltage protection” is shown in Figure 17. 

 

Figure 17 DC overvoltage protection block  

3.6.3 overcurrent protection block 

 The overcurrent protection shown in Figure 18 blocks the converter temporarily when the converter 
current exceeds the pre-specified limit. 

 

Figure 18 Overcurrent protection block  
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4 Example 

In this section, some simulation results are presented to demonstrate some features of the GFM 
inverter. Figure 19 shows the setup of the network used for simulations. The initial voltage and 
active power of the GFM are respectively set to 1.02pu and 0.7pu. The initial active and reactive 
power of the grid-following inverter (GFL) are respectively set to 0.7pu and 0. The rated power for 
both GFM and GFL inverters is 45MW. The short-circuit power of the external grid is 500MVA at 
34.5kV. 

Several events are defined during the simulation. 
o At t=1s, the breaker connecting the external grid to the rest of the circuit is opened, and both 

GFL and GFM inverters supply the load thereby making a 100% inverter network. 
o At t=1.5s a 10MW, 10MVAR load is connected to the network and then it is disconnected at 

t=2s.  
o At t=2.8s a three-phase fault occurs at Bus 1 and the fault clears at 3s. 

Figure 20 to Figure 23 show the simulation results when the GFM inverter is set to droop-base, 
VSM, dVOC, and PLL-based control respectively. The GFM inverter can regulate its active and 
reactive power output by controlling the voltage amplitude and frequency. 

 

Figure 19 Initialization and flat start test: inverter active and reactive powers  
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Figure 20 Simulation results when GFM inverter is set to droop-based control 

 

Figure 21 Simulation results when GFM inverter is set to VSM control 
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Figure 22 Simulation results when GFM inverter is set to dVOC control 

 

Figure 23 Simulation results when GFM inverter is set to PLL-based control 
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